Tetrahedron Letters No.24, pp. 2321-2324, 1967. Pergamon Press Ltd. Printed in Great Britain.

STUDIES IN ORGANOPHOSPHORUS CHEMISTRY III. ⁽¹⁾ STRUCTURES OF TERTIARY PHOSPHINE DIHALIDES IN SOLUTION

G. A. Wiley and W. R. Stine⁽²⁾

Department of Chemistry, Syracuse University, Syracuse, New York

(Received 10 March 1967)

Tertiary phosphine dihalides (R_3PX_2) are efficient reagents for alkyl halide synthesis by virtue of having only two replaceable groups on "pentavalent" phosphorus⁽³⁾. Previous attempts at determining the structures of these substances have had limited success⁽⁴⁾. We report here the solution to this problem.

Analogy with the phosphorus pentahalides suggests the structural possibilities shown in Equation 1^(5a, b):

$$R_{3}PX_{2} \neq R_{3}PX^{+} X^{-} \neq R_{3}PX^{+} R_{3}PX_{3}^{-}$$
(1)

$$I \qquad II \qquad III \qquad III$$

$$R = \underline{n} - C_{4}H_{9} \text{ or } C_{6}H_{5}; X = Cl, Br, \text{ or } I$$

Our method is based on the premise that in the presence of a strong Lewis acid all of the phosphorus species in Equation 1 will convert completely to phosphonium salt $(R_3PX^+ LX^-;$ where L is the Lewis acid)^(4a, 5b, c). This permits the spectroscopic properties of R_3PX^+ to be unambiguously defined.

Results:

A. Triphenylphosphine Dichloride

TABLE I

P^{SI} N.M.R. Data for Triphenylphosphine Dichloride

Compound	Solvent	Chemical* Shift (p. p. m.)	
Ph3PCl2**	CH3CN	-62	

Compound	Solvent	Chemical* Shift (p. p. m.)
Ph ₃ PCl ⁺ SbCl ₆ ⁻	CH3CN	-66
Ph3PCl2	PhNO₂	- 8
Ph3PCl [*] AlCl4 ⁻	PhNO ₂	-65

*85% H₃PO₄ used as reference

**Spectra of hydrolysis products were run throughout to check for possible decomposition. Varying amounts of hydrolysis products were detected.

The similarity of the P^{31} n.m.r. chemical shift⁽⁶⁾ for Ph_3Cl_2 in acetonitrile to those of its 1:1 adducts with $AlCl_3$ or $SbCl_5$ provides strong evidence that in each case the resonance observed is that of the chlorotriphenylphosphonium ion (Ph_3PCl^+) and that triphenylphosphine dichloride exists as the phosphonium chloride structure in acetonitrile (Type II in Equation 1). The considerably more positive shift for Ph_3PCl_2 in nitrobenzene suggests that in this solvent it exists as a pentavalent species or as $R_3PX^+R_3PX_3^-$.

These conclusions are fully supported by infrared spectra⁽⁷⁾ in the 800-250 cm⁻¹ region The spectrum of Ph_3PCl_2 in acctonitrile underwent no change upon addition of one equivalent of SbCl₅ except for the appearance of an intense band at 335 cm⁻¹ attributable to the SbCl₅⁻ ion.^(5b) Triphenylphosphine dichloride in nitrobenzene exhibits a band at 310 cm⁻¹ which is absent in its spectrum in acctonitrile as well as in the spectra of its Lewis acid adducts.

The work of Moedritzer and Van Wazer⁽⁹⁾ combined with the assumption that the difference in chemical shifts between PhyPCI and PhyPCL⁵ would be greater than 150 p.p.m. permits us to rule out rapid equilibration of these species to account for the single band found for PhyPCl₂ in nitrobenzene. One would expect that the necessary lifetime to allow appearance of the separated peaks is approximately 10^{-7} sec. The exchange rate is likely smaller than that⁽¹⁰⁾ so that a separate band should appear for each ion if present. We thus conclude that the pentavalent form prevails in nitrobenzene.

B. Tri-n-butylphosphine Dichloride

TABLE II P³¹ N.M.R. Data for Tributylphosphine Dichloride

Compound	Solvent	Chemical Shift (p. p. m.)	
$(\underline{n} - C_4 H_{\theta})_3 F Cl_2$	CH ₃ CN	- 106	
$(\underline{n} - C_4 H_9)_3 PC1^+SbC1_6^-$	CH3CN	-102	
$(\underline{n} - C_4 H_9)_3 PCl_2$	$PhNO_2$	-104	

The P^{31} n.m.r. data for this substance are given in Table II. The similarity of the chemical shifts for this substance in either acetonitrile or nitrobenzene to that of its 1:1 adduct with SbCl_b in acetonitrile causes us to assign the phosphonium chloride structure (Type II in Equation 1) to it in both of these solvents. The infrared and proton n.m.r. data for these substances are more ambiguous but are more easily rationalized on the basis of structure II. Table III reproduces the pertinent data. Only minor shifts in infrared absorption frequencies and intensities are observed for the SbCl₅ adduct as compared with tributylphosphine dichloride. Major shifts normally accompany changes in coordination number from five to four. ^(4b, 5b) That no such change has occurred is suggested by the slight upfield shift of the α -CH₂ in the SbCl₅ adduct. A large downfield shift might have been expected if five to four coordination changes were occurring.⁽⁸⁾ The small changes in these spectra could arise from environmental effects occasioned by changing the counter ion of an ion pair.

TABLE III

Infrared and Proton N.M.R. Spectra of Tributylphosphine Dichloride in Acetonitrile

Compound	und Chemical Shift [*] for α -CH ₂ (p. p. m.)		Infrared Bands (cm ⁻¹)	
$(\underline{n} - C_4 H_2)_3 PCl_2$	-3.14	546	524	
$(\underline{n}-C_4H_9)_3PC1^+SbCl_6$	- 2.61	555	540	

*Tetramethyl silane used as a reference

Similar experiments have been done with $tri-\underline{n}$ -butylphosphine dibromide using mercuric bromide as the Lewis acid. P^{si} n.m.r. data indicate that the phosphonium salt structure is again present in both acetonitrile and nitrobenzene. In both solvents the dibromide has a chemical shift of 105 p.p.m. which changes only to 102 p.p.m. upon addition of the Lewis acid.

Compounds of the type R_3PF_2 (R = phenyl, methyl, ethyl, or <u>n</u>-butyl) are reported to be "pentavalent" as pure liquids.^(4d) All these findings harmonize with the expectation that the tendency toward "pentavalence" follows the patterns: F > Cl > Br > I, Ph > alkyl and non-polar solvents > polar solvents.

References:

- (1) Paper II: G. A. Wiley, B. M. Rein, and R. L. Hershkowitz, <u>Tetrahedron Letters</u>, No. 36, 2509 (1964).
- (2) Present Address: Department of Chemistry, Wilkes College, Wilkes-Barre, Pennsylvania 18703. Inquiries should be directed to this address.

- (3) G. A. Wiley, R. L. Hershkowitz, B. M. Rein, and B. C. Chung, <u>J. Am. Chem. Soc.</u>, <u>86</u> 964 (1964).
- (4) (a) K. Issleib and W. Seidel, <u>Z. Anorg. Chem.</u>, <u>281</u>, 201 (1956).
 (b) J. Goubeau and R. Baumgartner, <u>Z. Electrochem.</u>, <u>64</u>, 598 (1960).
 (c) L. Horner and H. Winkler, <u>Tetrahedron Letters</u>, No. 9, pp. 455-460, (1964).
 (d) E. L. Muetterties, W. Mahler, and R. Schmutzler, <u>Inorg. Chem.</u>, <u>2</u>, 613 (1963).
- (5) (a) D. S. Payne, <u>Quart. Rev.</u>, <u>15</u>, 173 (1961).
 (b) I. R. Beattie and M. Webster, <u>J. Chem. Soc.</u>, 38 (1963).
 (c) V. P. Petro and S. G. Shore, J. Chem. Soc., 336 (1964).
- (6) We gratefully acknowledge Drs. J. R. Van Wazer and M. M. Crutchfield for providing us with the P³¹ n.m.r. spectra used in this study.
- (7) Infrared spectral data in the 800-250 cm⁻¹ region were obtained on a Perkin-Elmer Model 621 Infrared Spectrophotometer.
- (8) G. A. Olah, E. B. Baker, J. C. Evans, W. S. Tolgyesi, J. S. McIntyre, and I. J. Bastien, J. Am. Chem. Soc., <u>86</u>, 1360 (1964).
- (9) K. Moedritzer and J. R. Van Wazer, <u>Inorg. Chem.</u>, <u>3</u>, 139 (1964).
- (10) L. Kolditz and D. Hass, Z. Anorg. µ. Allgem. Chem., 294, 191 (1958).
- (11) This research was supported by the Public Health Service Research Grant GM 08956 from the National Institute of General Medical Sciences.